• Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
MotoIQ
MotoIQ
  • Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Features

Industry Insider: A Look Inside StopTech’s Production Facility

  • Mike Kojima

The pad is then removed from the mold.  In this condition, it is not yet ready to be tested.

After molding, the pad is baked in this cure oven to further set the binders in the molded brake pad compound.

A small piece of the newly molded friction compound is tested on this machine to get a rough idea of how it performs. This small brake dyno provides crucial data, such as the friction curve of the new compound.

This test machine is used to to get a rough idea of how close a new compound will perform to the intended results. If it’s not within the ballpark of the pad-project goals the team goes back to the “kitchen” before doing more time-consuming validation test. It is also used for quality assurance of existing compounds. Periodic spot-checks are performed on samples of production batches to certify performace levels.

This machine is used to prepare the experimental pad for testing. It is planed to the final thickness to fit in the brake dyno test caliper.

 

This is one of the smaller brake dynos and it is used for quick performance tests and some Motorsports validation. It’s the only one that is not sound proof, so noise tests are left for the other two brake dynos at the StopTech R&D facility.

A brake dyno is used to test brake pads and all other brake components. The dyno can simulate many types of braking conditions. From city driving and bumper to bumper traffic, to hot laps around different tracks and all-out stops. Valuable data can be gathered from these dynos such as friction changes over time/temperature, pad wear, rotor wear and even brake dust production.

There are three brake dynos at the StopTech R&D facility, each one is designed for a specific task.

– Brake Dyno #1 = High RPM tests

– Brake Dyno #2 = Heavy duty/load tests

– Brake Dyno #3 = Performace and wear tests

Related

Previous page 1 2 3 4 5 6 7 8 9 10Next page
Related Topics
  • brakes
  • Stoptech
Previous Article
  • Features
  • EVO X
  • Mitsubishi

Oh Boyd That’s Quick – Boyd Racing Evolution X

  • Erik Jacobs
View Post
Next Article
  • Features
  • Tech

Quick Spin and Nerd-Out: Jaguar I-PACE

  • Khiem Dinh
View Post
12 comments
  1. Dan DeRosia says:
    January 10, 2019 at 7:38 am

    That’s really cool how much stuff is in house. Thanks for sharing that; the whole setup is pretty interesting.

    As a minor gripe, and this isn’t against Stoptech, I wish there was publicly available comparative data to choose brake parts, and especially pads. Brake dyno results are probably not something the average person could usefully interpret though, much less subtleties of release characteristics and stuff… I just see all sorts of anecdotes where people have success with brand C, H, P, R, etc… and nobody’s really able to quantify anything other than really bad results in a way that doesn’t just boil down to preference.

    Reply
  2. Mike Kojima says:
    January 10, 2019 at 1:33 pm

    Stuff like release doesn’t translate too well to measurable testing. It is subjective and figured out by drive evaluation. Usually, stuff like release and gumminess has to do with pad hardness. Softer pads usually don’t release as well. might feel gummier and have better initial bite. Harder pads have better release and sometimes less initial bite. However, this isn’t cut and dry as brake compounding is part art!

    Reply
    1. Dan DeRosia says:
      January 10, 2019 at 2:07 pm

      As an engineer it just bothers me because seems like it should be possible to get enough data to at least narrow things down. At least PFC and Stoptech have pretty good writeups on their compounds relative to each other, but then you look at Hawk’s product lines where they still sell Black and Blue, or Raybestos where according to some they’re great pads and according to other they’re basically obsolete… much less Pagid and various others.

      It almost seems like there should be a flowchart somewhere. “You have such and such brake area, horsepower, grip, etc, start here” followed by things like “I didn’t like this” “OK, try this instead” I realize if I want it I’ll probably have to build it myself though.

      Reply
      1. ProsportAuto_Mike says:
        January 10, 2019 at 3:53 pm

        Hey Dan, this is exactly what I do for my job. I’m the ENDLESS and PFC distributor for New Zealand, so I go through things like this for my customers.
        Dyno data is tricky because it’s only showing the characteristics for one scenario.
        Differing input pressures (clamping force), disc speed, slotting and temperature change how each compound will react and perform. Any of the other companies that release their brake data (friction graphs) is only really for comparison against their other compounds, and it’s only a snapshot for those “brake conditions”.
        ENDLESS have a friction coefficient range that they release their pads with, but there is no industry standard for friction coefficient testing. For example, ENDLESS ME20 is slightly more bite/friction than Ferodo DS3000. ME20 has a µ of 0.35-0.40 and DS3000 has a µ of around 0.48.
        I can understand how it’s so confusing, but I walk my customer’s through these things on a day to day basis.

        Reply
        1. joe says:
          January 13, 2019 at 12:42 am

          You can always use the DOT brake pad codes to evaluate a brake pad.

          DOT Pad Codes

          This two letter edge code mandated by the DOT, and painted on all street legal brake pads, will give you some indication of their ability to resist fade. But only if you know how to read them. However, because of the wide range involved in each letter, it is only a rough indication.

          Explanation of D.O.T. Edge Codes Located on all Brake Pads

          Official D.O.T. Edge Code

          Coefficient of Friction (C.F.)
          @ 250 F and @ 600 F

          Comments

          EE

          0.25 to 0.35 both temps

          0-25% fade at 600 F possible

          FE

          0.25 to 0.35 @ 250 F
          0.35 to 0.45 @ 600 F

          2% to 44% fade at 600 F possible

          FF

          0.35 to 0.45 both temps

          0-22% fade at 600 F possible

          GG

          0.45 to 0.55

          Very Rare

          HH

          0.55 to 0.65

          Carbon/Carbon only.
          O.K. up to 3000 F where it glows

          Notes: These edge codes are located on the edge of the friction material of every brake pad by government regulation, along with some other codes. The first letter is a grading of the C.F. at 250 F and the second letter is a grading of the material at 600 F. Each letter grade can actually have quite a range of C.F. But a difference in the letter grade from medium to hot temperature could be an indicator of fade. The letters can be in any order. Therefore FE pads fade when hot, and EF pads would not grab when cold.. Also, you should know that Steel on Steel has a C.F. of 0.25!! So EE pads have only marginally more torque than no pads at all! Therefore FF pads are usually considered the minimum for a high-performance pad.

          Reply
    2. Kevski Style says:
      January 11, 2019 at 4:01 am

      And gumminess is usually attributed to softer pads, because softer pads are in a way more adhesive based. Harder pads are abrasive based. And yes, adhesive is a weird term in general. as it is actuially slight compression in the pad. Should be quantifiable by using a a set pressure and measuring pad height before and after pressure is applied. Can be used to standerdise the stuff, although it’s highly reliant on measure the slightest of difference in height. Once you have that number you can test it with other pads. The more compression, the higher the stick and the more pads wear. The less compression, the more initial bite, the less the pads wear.

      Reply
  3. Mike Kojima says:
    January 10, 2019 at 4:46 pm

    You would be a good resource for us too!

    Reply
    1. ProsportAuto_Mike says:
      January 10, 2019 at 4:54 pm

      I’ve always loved MotoIQ, it’s one of the only websites I can find with new technical information as items are released. More than happy to help wherever I can Mike – feel free to email me.

      Reply
  4. Jon says:
    January 11, 2019 at 8:51 am

    One thing I’d love to see is upgraded calipers that don’t require a larger wheel to be installed. Those of with WRX’s want a bolt on package that doesn’t require moving up to 18″ wheels. Why is this so hard to get? Is it something that StopTech can make for me if I call them?

    Reply
    1. Tomwa says:
      January 14, 2019 at 3:11 pm

      This is typically so hard to get because when you are upgrading brakes there are some varying objectives.

      1. Increase thermal capacity – Application: Longer time on track without damage to rotors or over-heating brake system. This requires more mass in the rotor, or different material. Maybe small gains in cooling fins built into the rotor itself.

      2. Decrease Weight – Milled and channeled Brake calipers, Aluminum floating rotor hats, Carbon Ceramic rotors.

      3. Decrease Stopping Distance

      For Objective 3, you really have a number of ways of going about it. You can, change your brake pads. A more aggressive compound will brake harder, at the cost of going through more pad material and rotors faster. You could get new brake calipers, something fancy with more pistons and so on. But here’s the thing, can you brake hard enough to lock up your front tires? If you are on a sticky enough of a tire, the answer is ‘not really no’, then maybe you do need more brake force, can it be solved with a pad compound change? If all this extra braking force now required, and stickier tires now means you are putting more heat into the brakes (which otherwise would just be put into rubber smears on the pavement). How much thermal overhead do these factory brakes really have?

      Increasing the number of pistons in a brake system does not necessarily increase the clamping force, as it will also require that force to be applied through your brake cylinder, you could change the cly to increase the pedal ratio, but then it changes your pedal feel, and so on and so forth.

      There are advantages to the calipers offered by Stoptech and many others that are not found in OE brakes. Thermal barriers to keep heat out of the brake fluid, Multi-piston apposed to sliding single piston calipers, more distributed clamping to even pad wear, lighter weight, more exotic materials. Bling factor, pad selection. But it is very difficult to only try to ‘solve’ one brake problem at a time.

      No doubt if you really want you could get a brake solution to fit inside a 17 inch wheel, it may come with greater friction and clamping force than what you could accomplish with new pads in the factory calipers. However, do you really find that you have more tire than brake? Do you think that if you have that much tire you won’t need more thermal capacity in your brakes to keep them from overheating, cracking, or boiling fluid?

      Reply
      1. Avatar photo Mike Kojima says:
        January 14, 2019 at 4:45 pm

        Don’t forget about increasing pad volume for life and fade resistance potential.

        Reply
      2. Jon says:
        January 14, 2019 at 5:02 pm

        Great points all around. I’m more interested in switching caliper types. The WRX comes with your standard OEM sliding style caliper, which tend to bind up over time, especially in the salt belt. Moving to a different type eliminates a lot of the bind issues, plus the ability to swap pads without ripping the caliper apart.

        Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Input your search keywords and press Enter.