• Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
MotoIQ
MotoIQ
  • Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Tech

How Does Engine Position Affect Weight Distribution

  • Mike Kojima

Wrong! At 50.38% front weight it only made a 0.45% difference in weight distribution!  Moving the battery makes a bigger difference.

Next, we moved the engine 6.5″ forward. This is about where it was in FD legal configuration. You would think this would be a huge difference.

Nope, We now only have a 50.81% front-weight bias!  Setting the engine back 6.5″ took quite a bit of expense and fabrication to only improve the weight distribution by 0.88%. You might even do a little bit better with battery relocation!

So now we wanted to see what effect just adding some weight might do.  We pushed the engine back to its original position and plopped the 38 lb turbo right here.  In real life, it is actually back a few more inches but we just wanted to see.

So this made the car have 50.78% weight on the front wheels.  This is a 0.75 percent difference just from the weight of the turbo.  So putting the turbo in position made about the same difference as moving the engine 6.5″!

Related

Previous page 1 2 3Next page
Related Topics
  • suspension
  • Suspension Setup and Tuning
  • Weight Distribution
  • Weight Distribution Engine Position
  • Weight Percentage
Previous Article
  • BMW
  • Projects
  • E39 M5

Project E39 M5, Improving Cooling With CSF

  • Mike Kojima
View Post
Next Article
  • Truck & Off Road
  • Features
  • Tech

Off-Road Explorer ST with ALPHAequipt Grenade Wheels & General Tire’s Grabber ATX

  • Billy Johnson
View Post
11 comments
  1. twist says:
    February 27, 2023 at 5:22 am

    Thank You!

    Reply
  2. Dan DeRosia says:
    March 1, 2023 at 10:23 am

    Huh… yeah, OK. Thinking, it’s a big chunk of mass but in the grand scheme of things moving it 6.5 inches is going to have much less effect than moving something that’s maybe a tenth the weight 6.5 feet (numbers out of thin air). But obviously does get to a point where the answer is “do everything you’re allowed to”.

    Just musing; do you have general thoughts on when weight bias effects overwhelm mass centralization or vice versa? For example, and pretending you can get crossweight even either way, when would you prefer to put a hundred pounds of ballast in the passenger seat area vs the trunk?

    Reply
    1. Kieran Jackson says:
      March 1, 2023 at 1:28 pm

      Think of it more like using a breaker bar to break a really tight lug nut, as opposed to using a stubby wrench to break the same lug nut. With the battery being at the very front or very rear of the car, it could have the same effect as the much heavier engine toward the center of the car.

      Just a thought.

      Reply
      1. Ed says:
        March 3, 2023 at 8:36 pm

        “moving it 6.5 inches is going to have much less effect than moving something that’s maybe a tenth the weight 6.5 feet”

        yeah i think that’s what he was saying

        Reply
        1. Dan DeRosia says:
          March 7, 2023 at 8:33 am

          Right. My question was when fighting for more rear weight or fighting for better moment gets more critical to actual lap times… or at least a viewpoint?

          Reply
          1. Mike Nakata says:
            July 23, 2023 at 11:38 pm

            I hear you… But as a thought process… We now know it doesn’t move much weight back…. But how would the car’s handling have changed…. Because the front end became lighter and if the motor was already behind the front suspension and moved the 6.5 inches back further…. I’m much more interested in the handling changes felt while autocrossing or road racing and even drag racing…. In a back to back comparison… Because you’re still shifting the polar moment and mass of the car backwards…..

            As a second point….. how about moving the driver position back 8 inches and extending the steering and moving the pedal box…. Affects on the handling /performance…..

          2. Avatar photo Mike Kojima says:
            July 25, 2023 at 12:08 pm

            So you would want us to weld and cut the car a few times? Too tall of a request.

  3. Kevin says:
    March 4, 2023 at 7:33 am

    On my semi-scca prepared 68 Triumph GT6, at 2000 lbs, moving the battery from front to rear made a 5 point difference in weight distribution. In autocross wins, I added the rear spare fully to the rear to further improve weight distribution. Later for Summit Point raceway track days, the rear spare was replaced with a 9/16″ rear swaybar I designed using Fred Puhn’s great suspension book, to detrmine roll stiffness balance.

    Reply
  4. Kevin says:
    March 4, 2023 at 7:34 am

    The GT6 OEM battery location:

    https://www.alamy.com/triumph-gt6-mk-3-classic-car-engine-bay-at-the-oakamoor-hill-climb-13th-july-2019-oakamoor-staffordshire-uk-image260231847.html

    Reply
  5. Andrii says:
    March 5, 2023 at 4:13 am

    One important thing to consider when thinking about weight distribution is rotational inertia. While drift cars mostly rotate around the front axle, so moving an engine doesn’t cause a huge difference, in regular racing or street driving while making a hairpin car will have a massive amount of rotational inertia because the engine moved forward and the rotation axle is somewhere near the center of the car. M(R^2) – formula for the moment of inertia and also the name of the car designed around its mitigation.

    Simplified and not totally correct example.
    Let’s assume our car has a wheelbase of 2.76m, let’s assume that our’s suspension rotation center is in the middle. Let’s assume our engine’s length is 0.65m and mass is M. If we put the engine inside the wheelbase inertia’s arm (distance between the rotational center of the car and the center of mass of the engine) would be 0.73m, so the moment would be 0.54M.
    If we put half of the engine outside: the arm would be 1.055m and the moment would be 1.11M – more than two times increase of resistance.

    Reply
    1. Kevin says:
      March 14, 2023 at 5:14 pm

      I tracked a Porsche 924Turbo at Summit Point Raceway, and with the rear transaxle, the car had a high mass moment of inertia. It was easy to handle on 60+mph corners, as with slight rear roll resistance bias, the back end would come out in slow motion. I was following an insrtuctor’s 944 and his did exactly the same thing.

      When setting up my light steel flweel on my 93 RX7-TT, to compare polar moments of inertia wit the stock flyweel, I suspended each in a horizontal plane with 3 strings of a specific length, and timed the periods of oscilation to do the calculations. Also measured the presssure plate this was. Net was a ~ 30% reduction in inertia, for quicker 1st gear acceleration … easier to spin the wheels on take off.

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Input your search keywords and press Enter.