• Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
MotoIQ
MotoIQ
  • Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Tech

The Secret Turbo in the ‘Ring Slaying Porsche 919 Evo – Honeywell Garrett DualBoost for Gasoline Turbocharger

  • Khiem Dinh

So just how do you go about improving a turbocharger’s transient response while maintaining very high reliability and low cost?  It’s evident that more than just a material change is required.  We already know that lighter is better to improve transient response.  In addition to mass, rotational inertia is affected by geometry; the closer the mass to the axis of rotation, the lower the inertia and the faster things will spin up.

A few other concepts related to improving a turbo’s transient response include compressor to turbine wheel matching, turbine efficiency, and Blade Speed Ratio (U/Co).  U is the blade tip speed and Co (called C naught) is basically the speed of the gas flow into the turbine wheel.  Co is also known as the spouting velocity and is defined as that velocity which has a kinetic energy equal to the isentropic enthalpy drop from turbine inlet stagnation pressure to the final exhaust pressure; so for our purposes, it is basically the velocity of the gas into the turbine wheel.  For the commonly used radial flow turbine wheel in turbochargers, a ratio of approximately 0.7 is ideal for maximum efficiency.  So we know mass, inertia, wheel matching, turbine efficiency, and Blade Speed Ratio all factor into transient response.  Garrett went back to basics, reanalyzed the problem, and developed a completely new concept for a turbocharger.  The concept pairs an axial flow turbine wheel to a dual-sided compressor wheel to create a turbocharger called DualBoost™ for Gasoline.

The really fundamental change is going from a radial turbine wheel to an axial turbine wheel.  The axial turbine wheel address the need for improved transient response on two fronts: improved turbine efficiency at low U/Co and reduced rotational inertia.  The thing we have to remember about piston engines is that the flows are pulsating and not constant.  Pulsating flows leads to pulsating U/Co values and therefore varying levels of turbine efficiency.

This chart shows how the mass flow rate into the turbine inlet is a pulsating flow. Because the mass flow rate is pulsating, the exhaust velocity is also pulsating. The changing exhaust velocity changes the U/Co value at the turbine wheel. A U/Co value of 0.2 is not unusual at the start of a pulse.

 

Clearly turbine efficiency is a function of U/Co. Radial turbine wheels typically have a maximum efficiency at a U/Co of 0.7.

 

This graph shows the axial turbine’s superior efficiency versus a radial turbine at lower U/Co values. As previously mentioned, a U/Co value as low as 0.2 occurs at the beginning of an exhaust pulse. At U/Co=0.3, the turbine axial turbine wheel efficiency over a radial is about 55% versus 41%. That’s about a 34% advantage in converting exhaust energy into mechanical work to spin up the turbo faster. The axial wheel has better turbine efficiency everywhere below U/Co=0.6. This covers most of the range of U/Co the turbine wheel sees during an exhaust pulse. Therefore, the axial wheel will convert more of the energy from the exhaust flow into mechanical work than a radial wheel would.

 

The other major advantage of the axial turbine wheel over a radial wheel comes from geometry. A smaller diameter axial wheel can flow as much as a larger radial flow wheel. Being smaller diameter, the mass is closer to the centerline greatly reducing inertia. Remember that rotational inertia increases to the square of the distance that the mass is from the centerline, so moving the mass inward is especially important. An axial flow turbine wheel has half the rotational inertia of an equal flowing radial turbine wheel.

Related

Previous page 1 2 3 4Next page
Related Topics
  • Forced Induction and NOS
  • turbocharger
  • Porsche
  • Honeywell Garrett
  • 919 Evo
Previous Article
  • Uncategorized

Tickets Go On Sale for 2018 Formula DRIFT Final Round at Irwindale Speedway

  • Jeff Naeyaert
View Post
Next Article
  • CSF EVO X Racecar
  • Features
  • Mitsubishi

The CSF EvoX Racecar Build – The Beginning

  • Martin Gonzales
View Post
13 comments
  1. Einar Einarsson says:
    July 10, 2018 at 6:49 pm

    I Googled, Garret dualboost turbos. I found info back to 2011-12 on forums. But if you go to Garrett website there is no Dual boost turbos for sale and we are in 2018.

    Why has this technology still not been offered to the general public at least for aftermarket applications?

    Reply
  2. Maxzillian says:
    July 11, 2018 at 10:03 am

    What’s interesting is this tech is, somewhat, already on the road. The Ford 6.7 diesel uses a turbo that has this technology on the compressor side, but is otherwise conventional with the turbine. It should be no surprise that the 6.7 turbo is from Garrett.

    Reply
  3. Tarik Z Laaraj says:
    July 11, 2018 at 2:09 pm

    Are these turbos available from Honeywell or garrett?
    What about the VNT turbos?

    Reply
    1. Mike Stoller says:
      July 12, 2018 at 7:12 am

      Tarik, in full disclosure, please know that I work for Honeywell Transportation Systems (TS).

      Honeywell is the company; Transportation Systems is the business unit making Honeywell turbos for OEM factory applications; and.. for now… Garrett is our aftermarket brand.

      I write “for now” because Honeywell announced plans in Oct 2017 to spin TS into a publicly traded, stand-alone company by the end of Q3 this year. We have subsequently announced the intention to return to our roots and rename the new company Garrett once that happens. https://turbo.honeywell.com/whats-new-in-turbo/press-release/honeywell-announces-garrett-as-company-name-for-transportation-systems-business-after-spin-off/

      Reply
      1. Tarik Z laaraj says:
        July 15, 2018 at 10:13 pm

        Thanks Mike, so you’re bringing Garrett and TS together?

        How’s this affect the availability of these turbos for the aftermarket?

        Thank you!

        Reply
        1. Mike Stoller says:
          July 16, 2018 at 6:28 am

          No effect on our available product portfolio in terms of what currently exists. Again, Garrett is not currently a company, it is a brand. Everything behind the scenes that is TS which supports Honeywell and Honeywell Garrett Aftermarket stays in place.

          In addition to the marketing change when we move to rebranding everything Garrett after the spin, the company will enjoy independent governance and the ability to be more responsive and agile to meet industry needs. This is the point of the spin, to give the new Garrett the means to respond more quickly and with greater capability to launch desired innovations in both its OEM and Aftermarket turbo businesses, as well as our electric boosting products and automotive software operations.

          Reply
          1. Tarik Z Laaraj says:
            July 16, 2018 at 6:59 am

            Mike, sounds great!
            1: You said electric boosting products as in plural, does this mean you have electrically assisted turbos besides your electric compressor? Or are you referring to the Electro hydraulic controlled VNT turbos?

            2: It’ll be great to see what Garrett is able to do with loosening the leash.

            3: Are VNT gasoline turbos currently available for purchase? If so are they available in the 28/35/40 sizes??

  4. joe says:
    July 11, 2018 at 6:40 pm

    I asked motoiq about this tech several years ago. Surprised it’s taken so long for people to talk about it. kinda hate how this tech is kept secret for so long.

    Reply
  5. engineered says:
    July 11, 2018 at 10:01 pm

    When can I buy one?

    Reply
  6. Mark says:
    July 12, 2018 at 8:30 pm

    Mitsubishi was using TiAl turbine wheels in Lancer Evolution RS models from the EVO6 (which came out in 1999) right up to EVOX.

    Reply
    1. Khiem Dinh says:
      July 12, 2018 at 10:37 pm

      I’m pretty sure the MHI turbo with TiAl turbine wheel was ONLY used on the Evo 6.5 Tommi Makinen Edition (TME) and it was prone to breaking off. In 2012, Porsche had to put a stop order on the Panamera Turbo because the MHI turbos had their TiAl turbine wheels breaking off again.

      Reply
  7. Mike Stoller says:
    July 16, 2018 at 7:10 am

    Tarik, it appears we’ve exhausted the “reply” function. Shoot me a note at michael.stoller@honeywell.com.

    Reply
  8. Desiree romans says:
    August 7, 2025 at 4:43 am

    Yes! Finally something about dichter.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Input your search keywords and press Enter.