• Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
MotoIQ
MotoIQ
  • Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Tech

Inside KW Suspensions New EXR valve system!

  • Mike Kojima

The rebound damping fluid flow is controlled by this rod with a reverse needle valve at the end. The rod screws up and down in the valve body. This covers or exposes more or less of the fluid passage in the center spindle/valve body and this allows more or less fluid flow through the valve and thus more or less rebound damping. The rod passes through a hole in the shock shaft and up to the purple rebound adjuster knob at the top of the shaft.

This is the shock piston, it is attached to the end of shock rod. On the compression side of the piston or the back side we have this one-way valve disc and a star shaped washer spring. This and the rectangular orifices in the piston control some of the compression damping, the non adjustable part of it. The amount of force generated here is dependent on the hole size in the pistons and the tension of the star washer.  These are the calibration factors. The compression valve in the piston is important as it affects the pressure balance of the shock between the body of the shock and the remote reservoir.  Too much pressure going to the remote reservoir can cause valve cavitation and  make the adjustable part of the damping curve difficult to calibrate.  Too little and the adjustable part of the curve might not have enough influence on the shape of the damping curve for good user tunability.

This is the rebound side of the piston, it affects the fixed and non adjustable high speed part of the rebound damping curve. It uses the smaller inner holes of the piston, the washer like check valve and the coil spring that holds it closed to affect the rebound damping characteristics.  These are all tuning factors.  The smaller valve and the longer travel coil spring are what increases the valves hysteresis. The smaller valve must move further to activate which takes more time.

The final rebound calibration point is found in the piston bottom nut.  This holds the rebound center spindle/valve body and the piston to the shock rod. It has orifices in it to bleed flow passing through the center spindle/ valve body. It has a one way check valve in it as this helps make the compression and rebound circuits more discrete so the adjustments will have less bleed through. The street KW shocks, like a Variant 3 don’t have this check valve.

The above rebound valve, piston assembly is the new fast acting low hysteresis EXR valve technology. As you can see it looks completely different.

Related

Previous page 1 2 3 4Next page
Related Topics
  • KW Suspension
  • suspension
  • Shocks and Coilovers
  • Suspension Setup and Tuning
  • KW EXR Shocks
  • EXR valves
  • EXR
Previous Article
  • Industry News

King Racing – Protect Your Build Rebate

  • Industry Press Release
View Post
Next Article
  • Projects
  • Tundra
  • Toyota

Testing SDHQ Offroads Heavy Duty Battery Terminals

  • Mike Kojima
View Post
8 comments
  1. Dan Derosia says:
    August 11, 2020 at 7:49 am

    I’m going to have to do some napkin drawings after I’ve had enough coffee; I’m not saying anything against them, but some of the ways KW do things are very different than I’m used to.

    Reply
    1. Avatar photo Mike Kojima says:
      August 11, 2020 at 12:00 pm

      The low speed is much like any other shock, via a needle valve. The high-speed short travel fast response valves are certainly different than your traditional deflecting disc, poppet or spool valves.

      Reply
      1. Dan Derosia says:
        August 11, 2020 at 5:25 pm

        The execution of the needle valve is a lot different though even if it works similarly.

        The high speed blowoff stuff reminds me a bit of the Penske regressive valve in terms of how the closing shim moves (not the port shape interaction, just the shim moving straight with a spring preload vs deflecting); I’d expect kind of a sharper divide between high speed adjustments and low speed on that vs the conventional style of high speed adjustment… like the shim stack varying preload is going to open more and more with flow while KW’s should, once the pressure hits whatever value, open a lot more area all at once. KW’s method seems like it’d be more sensitive to manufacturing tolerances on the bellville setup but obviously they have it working.

        This stuff really is fascinating to me – I mean it’s all “a pressure sensitive valve that changes its open area” but the number of ways to do that is huge.

        Reply
        1. Avatar photo Mike Kojima says:
          August 11, 2020 at 6:25 pm

          Yeah it’s more of a reverse needle.

          Reply
  2. mike young says:
    August 11, 2020 at 11:24 am

    Does KW have a prevalved set of shocks that would work on my Subaru Legacy that I could order for our local timed rally cross events in Sonoma Calif? My Legacy has 1032 whp and 888 ft lbs of torque and currently weighs 2550 lbs with me in the seat.

    Reply
    1. Avatar photo Mike Kojima says:
      August 11, 2020 at 12:03 pm

      KW ERX shocks are from their Motorsports line and are made to order. They could certainly build you a set of shocks. Man, tell us more about your car, that seems worthy of a MotoIQ feature!

      Reply
  3. Dan Caulkins says:
    August 11, 2020 at 8:25 pm

    Any interest in building a mono shock for flat track motorcycle racing? 92 RWHP, 750 cc, 325 pounds, spec tire. Currently using Penske.

    Reply
    1. Avatar photo Mike Kojima says:
      August 12, 2020 at 3:06 pm

      Ohlins might have an application using through-shaft solid piston technology.

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Input your search keywords and press Enter.