• Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
  • Shop *NEW*
  • MotoIQ Garage Services
  • About
MotoIQ
MotoIQ
  • Tech
    • Tech Category
      • Engine
      • Bottom End
      • Rods and Pistons
      • Head and Headwork
      • Cams and Valvetrain
      • Cooling and Heat Management
      • Intake
      • Headers and Exhaust
      • Rotary
      • Engine Management and Tuning
      • Drivetrain
      • Transmission
      • Clutch and Flywheel
      • Differential and Final Drive
      • Driveshaft and Axle
      • Axles
    • Tech Category
      • Suspension
      • Shocks and Coilovers
      • Springs
      • Swaybars
      • Arms and Links
      • Bushings
      • Steering
      • Geometry Correction
      • Suspension Setup and Tuning
      • Brakes
      • Wheels and Tires
      • Fueling
      • Forced Induction and NOS
      • Aerodynamics
    • Tech Cat
      • Electrical
      • Battery and Power Distribution
      • Electronics
      • Wiring
      • Electrical System Education and Troubleshooting
      • Lubrication
      • Interior and Controls
      • Exterior
      • Paint and Bodywork
      • Wraps and Film Protection
      • Exterior Care and Maintenance
      • Data Acquisition and Tuning
      • Fabrication and Safety
      • Tips and How-To
  • Projects
    • Make A-D
      • Acura
      • Integra (DC2)
      • NSX
      • CSF RSX (DC5)
      • BMW
      • E30 (SR20 Powered)
      • E36 323is
      • E36 M3 (Black)
      • E36 M3 (Silver)
      • E39 M5
      • E46 M3
      • E90 M3
      • E46 Racecar
      • Yost Auto E92 M3
      • Yost Auto F82 M4
      • Chevrolet
      • Camaro Gen5
      • Corvette Stingray (C7 Z51)
      • Corvette Stingray (C8 Z51)
      • GMC Canyon
      • Dodge
      • Viper GTS
    • Make E-I
      • Ford
      • E350 Tow Rig
      • F150 EcoBoost
      • Fiesta ST
      • Focus ST
      • Mustang 5.0 (Grey)
      • Mustang 5.0 (White)
      • Mustang S197 (Budget Track Car)
      • Mustang S550 GT
      • Honda
      • Civic EF Racecar
      • Civic Si (Coupe)
      • Civic Si (EP3)
      • Civic Si (Saloon)
      • EJ Civic
      • Polystrand CRX
      • S2000 (AP1)
      • S2000 (AP2)
      • Infiniti
      • G20 Racecar
      • G20 (P10 AWD Turbo)
      • G35
      • G37S
    • Make J-M
      • Isuzu
      • Vehicross
      • Lexus
      • ISF
      • SC300
      • Mazda
      • V8 RX7 (3rd Gen)
      • RX-7 (3rd Gen)
      • RX-7 Restomod (3rd Gen)
      • Skyactiv 3
      • Frankenmiata
      • Miatabusa
      • My Girlfriend’s Miata
      • Mitsubishi
      • EVO VIII
      • EVO IX
      • EVO X
      • CSF EVO X Racecar
      • Professional Awesome EVO VIII
    • Make N-P
      • Nissan
      • 200SX
      • 200SX SE-R
      • 240SX Land Speed Racer
      • 300ZXTT
      • 350Z
      • 350Z Drift Car
      • 370Z
      • GT-R (R33)
      • GT-R (R35)
      • GT-R (Team America BNR32)
      • LS S13
      • NX GTi-R
      • Pathfinder
      • S13 Drift/Grip Do-it-All Mega 240
      • Sentra SE-R
      • Sentra Spec V
      • Silvia
      • STurdteen Drift Car
      • Porsche
      • 991 GT3RS
      • Cayman (987)
      • Cayman T
      • Cayman GTS 4.0
    • Make S-Z
      • Scion
      • FR-S
      • Scion Tuner Challenge FR-S
      • TC
      • Subaru
      • Autocross BRZ
      • Legacy GT
      • STI (gen 2)
      • STI (gen 3)
      • WRX (GD)
      • WRX (VA)
      • Toyota
      • 4Runner
      • AE86 Corolla
      • GR Corolla
      • Starletabusa
      • Supra Mark IV
      • Tacoma
      • Tundra
      • Volkswagen
      • MKIV Jetta TDI
      • MKVI Golf TDI
      • MKVII Golf R
      • Sipster (Rabbit)
    • Other Projects
      • Powersports
      • Aprilia RS50
      • Aprilia SR50
      • Doodlebug
      • Ducati 998
      • Ducati Hypermotard
      • Honda Ruckus
      • Husqvarna TE610
      • Go Karts
      • Other
      • Sim Racer
      • Aurora Cobra
      • Garage
      • NP01 Prototype
  • Features
    • Features
      • Feature Cars
      • Drag Race Cars
      • Drift Cars
      • Land Speed Cars
      • Open-Wheel Cars
      • Rally Cars
      • Road Race Cars
      • Street Cars
      • Time Attack Cars
      • Drag Racing
    • Features
      • Events
      • Drifting
      • Land Speed Racing
      • Open-Wheel Racing
      • Time Attack Racing
      • Rally Racing
      • Road Racing
      • Car Shows
      • Columns
      • SlipAngle Podcast
  • Video
easy aero
  • Tech

Easy Aero

  • Mike Kojima
The engine oil cooler is mounted towards the engine in this extended duct. This was done to move weight off the nose and to reduce turbulence and improve aerodynamics.  No air is permitted to back up in the opening for the radiator and oil cooler to reduce drag.
This submerged vent in the hood allows the air for the radiator and oil cooler to exit smoothly with less drag and to prevent pressure buildup in the engine compartment that can reduce downforce.
Our rear wing is designed by John McNulty of Aeroquick it is a low drag unit designed for low powered cars. It produces about 100 plus lbs of downforce at 100 mph with less than 7 lbs of drag.

The wing mounts pin to a sturdy chassis mount under the carbon decklid.  The wing is mounted as far rearward as NASA rules allowed and below the roofline per NASA rules. The wing is trimmed slightly upward as the air bends downward off the roof and we were trying to reduce separation and to make as little drag as possible.  The wing endplates increase wing effectiveness by eliminating spillover at the ends of the airfoil making every bit of it work.  A wing can also activate more airflow under the car increasing the effectiveness of a diffuser and other underbody aero.

The base shape of a car is like an airplane wing, the flow path over the top is longer than the bottom, this creates lift and all sedans with no aero aids make lift at speed. We can fix some of this by adding a rear diffuser. The diffuser reduces the lift and can even produce downforce by changing the shape of the car to more like an upside-down wing. Our car has a simple but effective rear diffuser.

When the car is at ride height, the rear suspension tucks up and does not mess up the flow to the diffuser as it looks like it might in this picture.  This diffuser was made from sheet aluminum with hand tools. A few simple guidelines to make your own diffuser.  The safe angle to make a diffuser is 7-10 degrees, any steeper than 10 degrees will result in flow separation from the roof of the diffuser causing it to stall, become turbulent, make drag and lose effectiveness.  You can do tricks to keep the flow attached but that’s beyond the scope of this article.

One simple trick we used to keep the flow attached to the diffuser roof is to add vortex generators. since our diffuser is at about the maximum angle before separation normally starts or 10 degrees and we wanted to smooth and straighten the airflow which is a bit turbulent since we don’t have a flat bottom on our car, we have 4 of them, those are the black triangles riveted to the diffuser.  You can tell our diffuser works, the dirt that gathers there is in long streaks, not swirls that would indicate turbulent flow.  Our diffuser reduces drag as well because the stock bumper hangs down like a parachute, trapping, and pressurizing air. The diffuser stops this from happening by cleaning up the undercar airflow here and makes downforce to boot!

Related

Previous page 1 2 3 4Next page
Related Topics
  • Aerodynamics
Previous Article
StopTech big brake kit installed on WRX
  • WRX (GD)
  • Projects
  • Subaru

Upgrading the WRX brakes with StopTech

  • Mike Kojima
View Post
Next Article
  • Features

Porsche Rennsport Reunion Event Coverage

  • Jeff Naeyaert
View Post
8 comments
  1. Tony says:
    October 9, 2018 at 12:05 pm

    You mentioned “racket mounted pins that slide into holes on the support bracket mounted on the frame. ” Any chance you have a part number or example link to go off of? Thanks!

    Reply
    1. Avatar photo Mike Kojima says:
      October 9, 2018 at 1:24 pm

      The pins were just something we made.

      Reply
  2. Rob says:
    October 9, 2018 at 7:34 pm

    Ive got A Z32 Race/Street setup. Still using the factory locations for the intercoolers (using US spec bumper). Would it be best to have the air exit out the bottom if front of each wheel or put vents in the wheel wells? Currently I am only using the factory exit out the bottom ( the version without the factory NACA duct).

    Rear Diffusers in the back are challenging due to the dual exhaust. At this time I am not interested in a side exhaust. How much would it reduce in performance if you ” poke” the exhaust through or would I be better off making a smaller one that just goes between both exhaust pipes?

    Last thought. It’s regarding air flow in the Engine bay. Currently I don’t have any holes in the hood, however I was thinking of taking off the molding that seals the hood near the windshield/wiper area. It would leave a 1″ gap along the entire width of the hood where the air could exit. I am unsure if that would help or hurt.

    Reply
    1. Avatar photo Mike Kojima says:
      October 9, 2018 at 11:10 pm

      I would vent in the wheel well or better out the sides in front of the wheels. It is better to blow the exhaust over the top of the diffuser rather than in it. Removing the molding at the rear of the windshield is a bad idea, the base of the windshield is a big high-pressure zone, the flow would back into the engine compartment, the opposite of what you want.

      Reply
      1. Leon says:
        October 10, 2018 at 5:24 pm

        By your comment of the high pressure zone in front of the windshield, would that also mean lifting the hood to vent hot air is a bad idea/ineffective?

        Reply
        1. Joe says:
          October 13, 2018 at 2:12 pm

          Yes, looks cool, works bad. Look at static pressure contour from CFD on Google image search. Pretty obvious, it’s a bad spot to vent. You want to vent in LP zones, gurney flaps, and gills, can prevent flow reversion.

          Reply
  3. Joe says:
    October 13, 2018 at 2:07 pm

    Those strakes on the diffuser are flow conditioners, not VG. The point of them is to reduce spanwise flow. They were heavily used on early swept wing aircraft.

    Also, the point of producing a vortex, is to have an effect on a surface downstream, pointless to put VG on the rear, unless that vortex is directly making down force (which is unlikely, but not necessarily inconceivable.)

    Reply
  4. Mike Kojima says:
    October 13, 2018 at 2:32 pm

    I disagree and so do other motorsport aero guys including the guy who helps me that has a PHD in fluids.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Input your search keywords and press Enter.